ALGEBRA I SUMMER PACKET

(Preparation for Algebra I)

I. Fractions, Decimals, & Percents

Conversions

Examples:

Fraction	Decimal	Percent
$\frac{1}{2}$	Divide the numerator by the denominator 0.5	Move the decimal point two places to the right 50%
Since 5 is the last digit in the thousandths place, put 875 over 1000 and simplify the fraction $\frac{875}{1000} = \frac{7}{8}$	0.875	Move the decimal point two places to the right 87.5%
Since 2 is the last digit in the hundredths place, put 2 over 100 and simplify the fraction $\frac{2}{100} = \frac{1}{50}$	Move the decimal two places to the left 0.02	2%

Tutorial: http://www.purplemath.com/modules/percents.htm

Complete the following table. Convert fractions, decimals, and percents.

	Fraction	Decimal	Percent
1	<u>5</u> 8		
2		0.8	
3			70%

4	8 3	_	
5			3.5%
6		0.04	
7		0.54	
8			23.8%
9	4 1/3		
10			0.5%

Compare (<, >, =)

12)
$$\frac{1}{5}$$
 $\frac{1}{6}$

11) 3.398 _____ 3.349 12)
$$\frac{1}{5}$$
 _____ $\frac{1}{6}$ 13) $\frac{2}{8}$ _____ $\frac{1}{4}$

14)
$$\frac{5}{8}$$
 $\frac{4}{6}$

Percent Problems

There are 2 ways to solve a percent problem. You can use a proportion or write an equation. Look below to see both methods. You should use what you are comfortable with.

Percent Proportion	Percent Equation	
21	P = RB	
$\frac{part}{whole} = \frac{\%}{100}$	P is the percentage (part) R is the rate (%) as a decimal B is the base (whole)	

Example:

What is 90% of 45?

$$\frac{x}{45} = \frac{90}{100}$$

$$100x = 4050$$

$$\frac{100x}{100} = \frac{4050}{100}$$

$$x = 40.5$$

Example:

65% of what number is 78?

$$78 = .65x$$

$$\frac{78}{.65} = \frac{.65x}{.65}$$

$$x = 120$$

Write an equation or proportion for each problem and solve.

1) What percent of 56 is 14?

2) 36 is what percent of 40?

3) 80 is 40% of what number?

4) What is 110% of 80?

5) 30% of 70 is what number?

6) 6% of what number is 21?

II. Fraction Operations

Adding & Subtracting Fractions - To add and subtract fractions, you must have a common denominator - preferably a least common denominator (LCD).

Example 1

$$\frac{1}{2} + \frac{7}{8}$$

The least common denominator for 2 and 8 is 8.

$$\frac{1}{2} \frac{(4)}{(4)} + \frac{7}{8}$$

Multiply the denominator of the first fraction by 4 to create

the common denominator of 8 and multiply the numerator by 4 also.

$$\frac{4}{8} + \frac{7}{8} = \frac{11}{8}$$

Add the numerators.

Example 2
$$\frac{4}{5} - \frac{2}{3}$$
 The least common denominator for 5 and 3 is 15.
 $\frac{4}{5} \cdot (3) - \frac{2}{3} \cdot (5)$ Multiply the numerator and denominator of the first fraction by 3 to create the common denominator. Multiply the numerator and denominator of the second fraction by 5 to create the common denominator $\frac{12}{15} - \frac{10}{15} = \frac{2}{15}$ Add the numerators.

Multiplying Fractions - To multiply two fractions, multiply the numerators and multiply the denominators. Then simplify the result

Example 1		Example 2	
$\frac{1}{2} \cdot \frac{4}{5}$	Multiply the numerators and the	$\frac{8}{9} \cdot 6$	Rewrite 6 as $\frac{6}{1}$
	denominators	$\frac{8}{9} \cdot \frac{6}{1}$	Multiply the numerators and the
4 10	Simplify the fraction.	48	denominators Simplify the fraction.
<u>2</u> 5		9 16 3	

Dividing Fractions - To divide two fractions, rewrite the problem as multiplication by the reciprocal. Follow the rules for the multiplying fractions.

Example 1
$$\frac{7}{10} \div \frac{5}{6}$$
 Rewrite as multiplying by the reciprocal.

 $\frac{7}{10} \cdot \frac{6}{5}$ Multiply the numerators and the denominators Simplify the fraction.

Perform the indicated operation.

1)
$$\frac{2}{7} + \frac{3}{4}$$

2)
$$\frac{5}{12} - \frac{1}{5}$$

3)
$$\frac{10}{17} - \frac{1}{2}$$

4)
$$\frac{3}{8} \cdot \frac{2}{7}$$

5)
$$\frac{3}{14} \div \frac{6}{7}$$

6)
$$\frac{16}{3} \div 8$$

7)
$$2\frac{1}{3} + 5\frac{4}{5}$$

8)
$$3\frac{1}{2} - \frac{5}{8}$$

9)
$$2\frac{3}{4} \cdot \frac{2}{3}$$

III. Integers

Plotting on the coordinate plane

Tutorial: http://www.math.com/school/subject2/lessons/S2U4L1GL.html

1) Plot each of the following points on the coordinate plane below. Be sure to label the points

with the correct letter after you plot them.

$$A(3,6)$$
 $B(-2,5)$

$$C(-4, -2)$$
 $D(5, -3)$

$$G(-3,0)$$
 $H(0,-4)$

2) Plot the given set on the number line.

QuickTime™ and a decompressor are needed to see this picture.

b)
$$\{-2.3, -\frac{5}{4}, 1, 4.03\}$$

QuickTime™ and a decompressor are needed to see this picture.

Integers on the Number Line

3) Evaluate the following absolute value problems.

6

Operations with Integers

Tutorials: http://www.aaamath.com/g65-add-3-negative.html

4) Evaluate the following using your knowledge of positive and negative numbers.

DO NOT USE A CALCULATOR!!

j.
$$\frac{-12+18a}{-6} =$$

IV. EXPONENTS

An exponent indicates how many times a base is used as a factor. For example,

$$5^3 = 5 \cdot 5 \cdot 5 = 125$$
 and $2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$

When dealing with variables, the same notation applies.

$$x \bullet x \bullet x \bullet x \bullet x = x^5$$

Operations with Exponents

1) When multiplying like bases, add the exponents.

Example 1 $x^7 \cdot x^2 = x^9$ because the bases are both x and 2 + 7 = 9

Example 2 $y^{11} \cdot y = y^{12}$ because the bases are both y and 11 + 1 = 12

Example 3 $h^5 \cdot n^3 = h^5 n^3$ because the bases are not the same.

2) When raising a power to a power, multiply the exponents.

Example 1 $(x^7)^2 = x^{14}$ because $7 \cdot 2 = 14$.

Example 2 $(y^3)^{11} = y^{33}$ because $3 \cdot 11 = 33$.

- Evaluate each of the following. 1)
 - a) 4^{3}
- b) 6²
- c) 10^4
- d) 8⁵

- 2) Simplify each of the following.
 - a) $x^4 \cdot x^{11}$ b) $n \cdot n^6$ c) $(c^5)^4$
- d) $(m^2)^7$

V. Order of Operations (PEMDAS)

Parentheses

Exponents

Multiplication
Division

Done from left to right

Addition
Subtraction

Done from left to right

Tutorials: http://www.math.com/school/subject2/lessons/S2U1L2GL.html

Simplify using order of operations. Show all work!

1)
$$24 \div 4 + 3^2$$

2)
$$13 + (3 \cdot 2)^2 - 8$$

$$3)14 \div 7 \bullet 5 - 3^{2}$$

4)
$$[8 \cdot 2 - (3+9)] + [8 \div 2 \cdot 3]$$
 5) $5 + [30 - (6-1)^2]$

5)
$$5 + [30 - (6 - 1)^2]$$

Evaluate means to find the value of an expression. To evaluate expressions, replace the variable with the given number and simplify using order of operations. Show all work!

5) Evaluate
$$x^2 - 4x + 9$$
, when $x = -3$

6) Evaluate
$$g^2 - (h^3 - 4j)$$
 when $g = 7$, $h = 3$ and $j = -5$

7) Evaluate
$$\frac{20-c}{b}$$
 when $b=4$, and $c=-8$

8) Evaluate
$$\frac{2(5ab)}{c}$$
 when a = 3, b = 2, and c = -12

9) Evaluate
$$\frac{3y + x^2}{z}$$
 when x = 6, y = 8, and z = 3

VI. Simplifying Variable Expressions

Tutorials:

<u>Distributive Property</u>

Explanation: http://www.algebrahelp.com/lessons/simplifying/distribution/

Combining Like Term

http://www.algebrahelp.com/lessons/simplifying/combiningliketerms/

Examples

#1

$$6x + 9y - 2x - 12y$$

Combine all the x's, Combine all the y's

#2

$$7(8x + 3)$$

Multiply the 7 by BOTH #'s in the parentheses.

$$7(8x) + 7(3)$$

$$56x + 21$$

Simplify each expression by distributing and combining like terms.

1)
$$4x + 7y - 14x + 2y$$

6)
$$-3(2x - 5y)$$

2)
$$-13 - 4y - 5z + 15 - (-4z) + 11y$$

7)
$$3(7x - 4) + 3x$$

3)
$$20xy + 3x^2y - 10x^2y - 30xy$$

8)
$$9(6 + 2y) - 5 + 2y$$

4)
$$5(x + 3)$$

9)
$$2(3x-1)+3(x+7)$$

$$10)9(2x + 4) - 2(3x - 1)$$

VII. Equations

Tutorials: https://www.khanacademy.org/math/algebra-home/alg-basic-eq-ineq

Solve and check each equation. (SHOW ALL WORK!)

1.
$$x-4=2$$

2.
$$11 + b = 18$$

3.
$$w + \frac{2}{3} = \frac{5}{6}$$

4.
$$4x = 48$$

5.
$$7a = -49$$

6.
$$\frac{m}{6} = 3$$

7.
$$\frac{4}{5}y = 12$$

8.
$$\frac{1}{3}x = -7$$

9.
$$5x + 2 = 2$$

10.
$$5x - 3 = 17$$

12.
$$7 = 6m - 47$$

13.
$$\frac{b}{4} - 5 = 6$$

14.
$$2(3x - 6) = 12$$

15.
$$4(x + 3) + 2 = -10$$

16.
$$-3(2x + 5) + 3 = 12$$